
EBAMRTools: EBChombo’s Adaptive Refinement

Library

P. Colella
D. T. Graves
T. J. Ligocki
D. Modiano

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

April 16, 2003

Contents

1 Introduction 2

2 Notation 2

3 Conservative Averaging 3

4 Interpolation Operations 4

4.1 Piecewise Linear Interpolation . 4
4.2 Piecewise-Linear Coarse-Fine Boundary Interpolation 4
4.3 Quadratic Coarse-Fine Boundary Interpolation 5

5 Redistribution 5

5.1 Multilevel Redistribution Summary . 5
5.2 Coarse to Fine Redistribution . 6
5.3 Fine to Coarse Redistribution . 7
5.4 Coarse to Coarse Redistribution . 8

1

6 Refluxing 8

7 Subcycling in time with embedded boundaries 10

8 EBAMRTools User Interface 11

8.1 Class EBCoarseAverage . 12
8.2 Class EBPWLFineInterp . 12
8.3 Class EBPWLFillPatch . 13
8.4 Class RedistStencil . 14
8.5 Class EBLevelRedist . 15
8.6 Class EBFluxRegister . 16
8.7 Class EBCoarToFineRedist . 19
8.8 Class EBFineToCoarRedist . 20
8.9 Class EBCoarToCoarRedist . 21

1 Introduction

This document is meant to discuss the different components of the EBAMRTools compo-
nent of the EBChombo infrastructure for embedded boundary, block-structured adaptive
mesh applications. The principal operations that these tools execute are as follows:

• Average a level’s worth of data onto the next coarser level.

• Interpolate in a piecewise-linear fashion data from a coarser level to a finer level.

• Fill ghost cells at a coarse-fine interface with a second-order interpolation between
the coarse and fine data.

• Fill ghost cells at a coarse-fine interface with data interpolated using a bilinear
interpolation.

• Preserve multi-level conservation using refluxing.

• Redistibute mass differences between stable and conservative schemes.

After a discourse on the notational difficulties of embedded boundaries, we will discuss
our algorithm for each of these tasks.

2 Notation

All these operations take place in a very similar context to that presented in [CGL+00].
For non-embedded boundary notation, refer to that document. The standard (i, j, k) is
not sufficient here to denote a computational cell as there can be multiple VoFs per cell.
We define v to be the notation for a VoF and f to be a face. The function ind(v)

2

produces the cell which the VoF lives in. We define v+(f) to be the VoF on the high side
of face f ; v−(f) is the VoF on the low side of face f ; f+

d (v) is the set of faces on the high
side of VoF v; f−d (v) is the set of faces on the low side of VoF v, where d ∈ {x, y, z} is a
coordinate direction (the number of directions is D). Also, we compose these operators
to represent the set of VoFs directly connected to a given VoF: v+

d (v) = v+(f+
d (v))

and v−d (v) = v−(f−d (v)). The << operator shifts data in the direction of the left hand
argument:

(φ << ed)v = φv+
d

(v) (1)

We follow the same approach in the EB case in defining multilevel data and operators
as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmax

l=0 , we define the valid
VoFs on level l to be

V lvalid = ind−1(Ωl
valid) (2)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmax
l=0 , ϕl,valid : V lvalid → Rm (3)

For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)
~F l,valid = (F l,valid

0 , . . . , F
l,valid
D−1)

F
l,valid
d : F l,d

valid → Rm

(4)

3 Conservative Averaging

Assume that there are two levels of grids Ωc,Ωf , with data defined on the fine grid and
on the valid region of the coarse grid

ϕf : ind−1(Ωf)→ Rϕc,valid : ind−1(Ωc
valid)→ R (5)

We assume that Cr(Ω̃
f)∩ Γc ⊂ Ωc. We want to replace the coarse data which is covered

by fine data with the volume-weighted average of the fine data. This operator is used
to average from finer levels on to coarser levels, or for constructing averaged residuals in
multigrid iteration. We define the volume weighted average

ϕcvc
= Av(ϕf , nref)vc

Av(ϕf) = 1
V c

∑

vf∈F

V fϕvf

F = C−1
nref

(vc)

(6)

3

4 Interpolation Operations

4.1 Piecewise Linear Interpolation

This method is primarily used to initialize fine grid data after regridding. Given a level
array ϕc on Ωc, we want to compute Ipwl(ϕ) defined on an Ω

f properly nested in Ωc. For
the values on C(Ω̃f), interpolate in a piecewise-linear fashion in space, using the values ϕ̃c

(we assume that the coarse data already contains the average of the fine data as discussed
in the last section).

ϕfvf
= ϕ̃cvc

+
D−1
∑

d=0

(
(ind(vf)d+ 1

2
)

nref
− ind(vc) +

1
2
))∆d · ϕcvc

where vc ∈ ind−1(Ω̃f − Ωf)
vc = Cnref

(vf).

(7)

The slopes ∆d are computed using minmod limiting as shown below:

∆dWvc
= δminmod(Wvc

)|δL(Wvc
)|δR(Wvc

)|0
δL(Wvc

) = Wvc
− (W n

v<<−ed)
δR(Wvc

) = (W n
v<<ed)−Wvc

(8)

δminmod =

{

min(|δL|, |δR|) · sign(δL + δR) if δL · δR > 0
0 otherwise

}

(9)

The shift operator (denoted by <<) is defined using a simple average of connected values.

4.2 Piecewise-Linear Coarse-Fine Boundary Interpolation

In the next algorithm, we use the same linear interpolant but we also interpoalte in
time between levels of time. We have the solution on the coarser level of refinement
at two time levels, tCold and tCnew. We want to compute an extension ϕ̃f of ϕf on
Ω̃f = G(Ωf , p) ∩ Γf , p > 0 that exists at time level tF where tCold < tf < tCnew. We
assume that Cr(Ω̃

f) ∩ ΓcCΩc. Extend ϕc,valid to ϕc, defined on all of ind−1(Ωc).

ϕcvc
= Av(ϕf , nref)vc

,vc ∈ ind−1Cnref
(Ωf) (10)

At both tCold and tCnew, for the values on Ω̃
f−Ωf compute a piecewise linear interpolant,

using the values ϕ̃c.

ϕ̃fvf
= ϕ̃fvc

+
D−1
∑

d=0

(
(ind(vf)d+ 1

2
)

nref
− (ind(vc) +

1
2
))∆d · ϕcvc

where vc ∈ ind−1(Ω̃f − Ωf),
vc = Cnref

(vf).

(11)

4

The slopes ∆d are computed using minmod limiting as shown in equation 9. We then
interpolate in time between the new and old interpolated values.

ϕ
f
vf ,tF

= ϕ̃
f
vf ,tCold

+
tF − tCold

tCnew − tCold
(ϕ̃fvf ,tCnew

− ϕ̃
f
vf ,tCold

) (12)

This process should produce an interpolated value which has second-order error in both
time and space.

4.3 Quadratic Coarse-Fine Boundary Interpolation

At VoFs where the embedded boundary crosses the coarse-fine boundary, we use the
algorithm described in 4.1. On all other cells, we use the algorithm in [CGL+00].

5 Redistribution

To preserve stability and conservation in embedded boundary calculations, we must redis-
tribute a quantity of mass δM (the difference between stable and conservative updates)
from irregular VoFs to their neighbors. This mass is normalized by hD where h is the
grid spacing on the level. We define ηv to be the set of neighbors (no farther away than
the redistribution radius) which can be reached by a monotonic path. We then assign
normalized weights to each of the neighbors v

′

and divide the mass accordingly:

δMv =
∑

v
′
∈ηv

wv,′κv
′δMv (13)

where
∑

v
′
∈ηv

wv,v
′κv

′ = 1 (14)

We then update the solution U at the neighboring cells v
′

U l

v
′ += wv,v

′δM l
v. (15)

This operation occurs at all v ∈ ind−1(Ωl) without regard to valid or invalid regions.
If the irregular cell is within the redistribution radius of a coarse-fine interface, we must
account for mass that is redistributed across the interface.

5.1 Multilevel Redistribution Summary

We begin with δM l
v,v ∈ ind−1Ωl, the redistribution mass for level l.

Define the redistribution radius to be Rr. We define the coarsening operator to be
CNref

and the refinement operator to be C−1
Nref

. We define the “growth” operator to

5

be G. The operator which produces the ZD index of a vof is ind and the operator to
produces the VoFs for points in ZD is ind−1.
If v is part of the valid region, the redistribution mass is divided into three parts,

δM l
v = δ1M l

v + δ2M l,l+1
v + δ2M l,l−1

v ,

v ∈ ind−1(Ωl,valid).
(16)

δ1M l
v is the part of the mass which is put onto the Ω

l,valid. δ2M l,l+1
v is the part of the

mass which is redistributed to Ωl ∩CNref
(Ωl+1) (the part of the level covered by the next

finer level). δM l,l−1
v is the part of the mass which is redistributed off level l.

If v is not part of the valid region, the redistribution mass is divided into two parts,

δM l
v = δIM l

v + δM l,l
v

v ∈ ind−1(Ω− Ωl,valid).
(17)

δIM l
v is the portion of δ

lM l
v which is redistributed to other invalid VoFs of level l.

δIMP l, lv is the portion of δlM l
v which is redistributed to valid VoFs of level l and must

be removed later from the solution.
We must account for δM l,l−1

v , δ2M l,l+1
v and δ3M l,l

v to preserve conservation. δ2M l,l+1
v

is added to the level l + 1 solution. δ2M l,l−1
v is added to the level l − 1 solution. δ3M l,l

v

is removed from the level l solution.

5.2 Coarse to Fine Redistribution

The mass going from coarse to fine is accounted for as follows. Recall that the mass we
store is normalized by hDc where hc is the grid spacing of the level of the source. Define hf
to be the grid spacing of the destination. For all VoFs vc ∈ ind−1(CNref

(G(Ωl+1, Rr)−
Ωl+1)), we define the coarse-to-fine redistribtuion mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind−1(CNref

(Ωl+1)).
(18)

Define ζ2
v′

c
to be the unnormalized mass that goes to VoF v′

c
. We distribute this mass to

the VoFs v′

f
that cover v′

c
(v′

f
∈ C−1

Nref
(v′

c
)) in a volume-weighted fashion.

ζ2
v′

c
= hDc wvc,v

′

c
κv′

c
δM l

vc

ζ2
v′

f
=

κ
v′

f
hD

f

κchD
c
ζ2
v′

c

ζ2
v′

f
= κv′

f
hDf wvc,v

′

c
δM l

vc

(19)

6

The change in the fine solution is the given by

δU l+1
v′

f
=

ζ2
v′

f

κ
v′

f
hD

f

= δM l
vc
wvc,v

′

c

U l+1
v′

f
+= δM l

vc
wvc,v

′

c

vc ∈ ind−1(CNref
(G(Ωl+1, Rr)− Ωl+1))

v′

c
= ηvc

∩ ind−1(CNref
(Ωl+1))

v′

f
∈ C−1

Nref
(v′

c
)

(20)

This can be interpreted as a piecewise-constant interpolation of the solution density.

5.3 Fine to Coarse Redistribution

The mass going from fine to coarse is accounted for as follows. Recall that the mass we
store is normalized by hDf where hf is the grid spacing of the level of the source. Define

hc to be the grid spacing of the destination. For all VoFs vf ∈ ind−1(Ωl−G(Ωl,−Rr)),
we define the fine-to-coarse redistribtuion mass δ2M l,l−1 to be

δ2M l,l−1
vf

=
∑

v′

f
∈Q(vf)

δM l
vf
wvf ,v

′

f
κv′

f

Q(vf) = ηvf
∩ ind−1(C−1

Nref
(Ωl−1)− Ωl).

(21)

For all VoFs vc ∈ ind−1(CNref
(G(Ωl+1, Rr)− Ωl+1)), we define the coarse-to-fine redis-

tribtuion mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind−1(CNref

(Ωl+1)).
(22)

Define ζ2
v′

f
to be the unnormalized mass that goes to VoF v′

f
. We distribute this mass to

the VoF v′

c
= CNref

(v′

f
).

ζ2
v′

f
= ζ2

v′

c
= hDf wvf ,v

′

f
κv′

f
δM l

vf
(23)

We define δU l−1
v′

c
to be the change in the coarse solution density due to δwMvf ,v

′

f
:

δU l−1
v′

c
=

ζ2
v′

f

κ
v′

c
hD

c

(24)

Substituting from above, we increment the coarse solution as follows

U l−1
v′

c
+=

κ
v′

f

κ
v′

c
ND

ref

δM l
vf
wvf ,v

′

f

vf ∈ ind−1(Ωl −G(Ωl,−Rr)),
v′

f
∈ ηvf

∩ ind−1(C−1
Nref

(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(25)

7

5.4 Coarse to Coarse Redistribution

The re-redistribution algorithm proceeds as follows. Given v ∈ ind−1(CNref
(Ωl+1), we

define the re-redistribution mass δ3Ml, l to be

δ3M l,l
v =

∑

v
′
∈T (v)

δM l
vwv,v

′κv
′

T (v) = ηv ∩ ind−1(Ωl).
(26)

In the level redistribution step, we have added this mass to the solution density using
equation 15. Re-redistribution is the process of removing it so that the solution is not
modified by invalid regions

U l

v
′ −= δM l

vwv,v
′

v ∈ ind−1(CNref
(Ωl+1))

(27)

6 Refluxing

First we describe the refluxing algorithm which, along with redistribution, preserves con-
servation at coarse-fine interfaces. The standard refluxing algorithm Given a level vector
field F on Ω, we define a discrete divergence operator D as follows:

κv(D · ~F) =
1
h
(
D−1
∑

d=0

(
∑

f∈F+
d

(v)

αf F̃f −
∑

f∈F−
d

(v)

αf F̃f) + αBv F
B
v)

F̃f = Ff +
∑

d:d6=dir(f)

|xf ,d|(Ff<<sign(xf ,d)ed − Ff),
(28)

where κv is the volume fraction of VoF v and αf is the area fraction of face f . Equation 28
consists of a summation of interpolated fluxes and a boundary flux. The flux interpolation
is discribed in [JC98]. Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector field.

We want to define a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We do

this by extending F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by F

f
valid.

< F
f
d >fc= 1

(nref)(D−1)αfc

∑

f∈C−1
nref

(fc)

αfF
f
d

f c ∈ ind−1(i+ 1
2
ed), i+ 1

2
ed ∈ ζ

f
d,+ ∪ ζ

f
d,−

ζ
f
d,± = {i±

1
2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref
(Ωf)}

(29)

Then we can define (D · ~F)v,v ∈ V
c
valid, using the expression above, with F̃f =< F

f
d >

on faces covered by F f . We can express the composite divergence in terms of a level
divergence, plus a correction. We define a flux register δ ~F f , associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF
f
d : ind−1(ζfd,+ ∪ ζ

f
d,−)→ Rm

(30)

8

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F

c,valid
d on F c,d

valid then
for v ∈ Vcvalid

Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F
c)v (31)

Here δ ~F f is a flux register, set to be

δF
f
d =< F

f
d > −F c

d on ind−1(ζcd,+ ∪ ζ
c
d,−) (32)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ω
f it is given by

κv(DRδ ~F
f)v =

D−1
∑

d=0

(
∑

f :v=v+(f)

δF
f
d,f −

∑

f :v=v−(f)

δF
f
d,f) (33)

For the remaining vofs in Vfvalid,

(DRδ ~F
f) ≡ 0 (34)

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF))v (35)

At coarse cells which are also irregular, this leaves unaccounted-for the quantity of mass
δMRef given by

δMRef = (1− κv)(DR(δF))v (36)

This mass must be redistributed to preserve conservation:

δMRef,c
v =

∑

v
′
∈ηv−C(Vl,valid)

κv
′wv,v

′δMRef,c
v (37)

We increment the solution in the neighboring VoFs with their portion of δMRef :

U c
′ += κv

′wv,v
′δMRef,c

v

v
′

∈ ηv − C(Vf,valid)
(38)

Time steps and other factors have been absorbed into the definition of δM . Unfortunately,
we are not finished. In equation 38, some of the mass will be going back onto the fine
grid

δMRR,c += δMRef
∑

v
′
∈ηv−Vc,valid

κvwv,v
′ (39)

This mass must be accumulated at each fine time step. When the fine level has caught
up with the coarse level in time, we adjust the fine solution to account for this mass:

U
f

C−1(v
′
)
+= wv,v

′δMRR,c
v

v
′

∈ ηv − V
f,valid

(40)

9

7 Subcycling in time with embedded boundaries

We use the subcycling-in-time algorithm specified by Berger and Oliger [BO84] to advance
an AMR solution in time. Embedded boundary synchronization substantially complicates
Berger-Oliger timestepping. Here we present an overview of Berger-Oliger subcycling in
time for adaptive mesh refinement in the context of embedded boundaries. Say we are
solving the hyperbolic system of equations

∂U

∂t
+∇ · F = 0 (41)

in a domain discretized as described above. Here is an outline of the Berger-Oliger
algorithm for this equation. First we perform the steps required to preserve stability and
conservation in the presence of embedded boundaries.

• Compute fluxes F l on F .

• Compute the conservative and non-conservative solution updates (DC(F l) and
DNCC(F l)).

• Update the solution on the level:

Unew,l
v = U old,l

v −∆t(κDNC(F l)v + (1− κ)DC(F l)v), v ∈ ind−1(Ωl) (42)

• Initialize redistribution mass δM l to be the mass left out in the previous step.

δM l
v = ∆tκv(1− κv)(D

NC(F l)v −DC(F l)v)
v ∈ ind−1I l

(43)

• Perform level redistribution of δM l:

U
new,l

v
′ += wv,v

′δM l
v

v
′

∈ {ηv ∩ ind−1(Ωl)}
∑

v
′
∈ηv

wv,v
′κv

′ = 1
(44)

Second we perform the steps required to preserve conservation across coarse-fine inter-
faces. We define δF to be flux registers and δ2M to be redistribution registers.

• We increment the flux register between this level and the next coarser level.

δF
l,l−1
f += < F l >f ∆t

l

f ∈ ∂(C(F l−1))
(45)

• We initialize the flux register between this level and the next finer level.

δF
l+1,l
f =< F l >f ∆t

l

f ∈ ∂(F l+1)
(46)

10

• Increment redistribution registers between this level and the next coarser level.

δ2M l,l−1
v = δM l

vv ∈ ind−1(I l) (47)

• Initialize redistribution registers with next finer level and the coarse-coarse (“re-
redistribution”) registers. for v ∈ ind−1(I)l

δ2M l,l+1
v = δM l

v

δ2M l,l
v = −δM l

v

δ2M l+1,l
v = 0

(48)

• Advance level l + 1 solution to time tnew,l (requires a minimum of nref time steps.

• Reflux a portion of the flux difference in equation 46 and save the extra mass into
the appropriate redistribution register.

Unew,l
v += κDR(δF

l+1)v
δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v

δ3M l,l
v += κv(1− κv)DR(δF

l+1)v

(49)

• Redistribute mass that was redistributed (in both directions) across coarse-fine in-
terfaces.

U l+1
v′

f
+= δ2M l,l+1

vc
wvc,v

′

c

vc ∈ ind−1(CNref
(G(Ωl+1, Rr)− Ωl+1))

v′

c
= ηvc

∩ ind−1(CNref
(Ωl+1))

v′

f
∈ C−1

Nref
(v′

c
)

(50)

U l−1
v′

c
+=

κ
v′

f

κ
v′

c
ND

ref

δ2M l,l−1
vf

wvf ,v
′

f

vf ∈ ind−1(Ωl −G(Ωl,−Rr)),
v′

f
∈ ηvf

∩ ind−1(C−1
Nref

(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(51)

• Re-redistribute mass that was redistributed from invalid regions.

U l

v
′ −= δ3M l,l

v wv,v
′

v ∈ ind−1(CNref
(Ωl+1))

(52)

• Finally average down the finer solution where appropriate

Unew,l
v =< Unew,l+1 >, v ∈ ind−1CNref

(Ωl + 1) (53)

8 EBAMRTools User Interface

This section describes the various classes which implement the various algorithms described
in the above section.

11

8.1 Class EBCoarseAverage

The EBCoarseAverage class is used to average from finer levels on to coarser levels, or
for constructing averaged residuals in multigrid iteration. It averages fine data to coarse
in a volume-weighted way (see equation 6). This class uses copying from one layout to
another for communication. This class has as data a scratch copy of the data at the coarse
level. The averaging operator is blocking due to the copy. The important functions of
the EBCoarseAverage class are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
average function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void average(LevelData<EBCellFAB>& coarData,

const LevelData<EBCellFAB>& fineData,

const Interval& variables);

Average the fine data onto the coarse data over the intersection of the coarse layout
with the coarsened fine layout.

– coarData: The data over the coarse layout.

– fineData: The data over the fine layout. Fine and coarse data must have the
same number of variables.

– variables: The variables to average. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

8.2 Class EBPWLFineInterp

The EBPWLFineInterp class is used to interpolate in a piecewise-linear fashion coarse
data onto fine layouts (see equation 7). This is primarily a useful class for regridding. It
contains stencils and slopes over the coarse level and uses copy for communication. This
makes its interpolate function blocking. The important functions of EBPWLFineInterp
are as follows:

12

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarData,

const Interval& variables);

Interpolate the fine data from the coarse data over the intersection of the fine layout
with the refined coarse layout.

– fineData: The data over the fine layout.

– coarData: The data over the coarse layout.

– variables: The variables to interpolate. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

8.3 Class EBPWLFillPatch

Given coarse data at old and new times, during subcycling in time, we need to interpolated
ghost data onto a fine data set at a time between the old and new coarse times. The
EBPWLFillPatch class is used to interpolate fine data over the ghost region that is not
covered by other fine grids. Data is simply copied from other fine grids where it is available.
Only one layer of ghost cells is filled.

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

13

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarDataOld,

const LevelData<EBCellFAB>& coarDataNew,

const Real& coarTimeOld,

const Real& coarTimeNew,

const Real& fineTime,

const Interval& variables);

Interpolate the indicated fine data variables from the coarse data on ghost cells which
overlay a coarse-fine interface. Copy fine data onto ghost cells where appropriate
(using LevelData::exchange). Only one layer of ghost cells is filled.

– fineData: The data over the fine layout.

– coarDataOld, coarDataNew: The data over the coarse layout at the old and
new times. Fine and coarse data must have the same number of variables.

– coarTimeOld, coarTimeNew: The values of the old and new time of the
coarse data. The old time must be smaller than the new time.

– fineTime: The time at which the fine data exists. This time must be between
the old and new coarse time.

8.4 Class RedistStencil

The RedistStencil class holds the stencil at every irregular VoF in a layout. The default
weights that the stencil holds are volume weights. The class does allow the flexibility to
redefine these weights. The weights correspond to wv,v′ in equations 37 and 44.

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& redistRadius);

Define the internals of the RedistStencil class.

– dbl: The layout of the data.

14

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• const BaseIVFAB<VoFStencil>&

operator[] (const DataIndex& datInd) const

Returns the redistribution stencil at every irregular point in input Box associated
with this DataIndex.

8.5 Class EBLevelRedist

The EBLevelRedist class performs mass redistibution in an embedded boundary context.
The algorithm for this is described in section 5. At irregular cells in a level described by
a union of rectangles, mass to be redistibuted is stored incrementally (one Box at a time,
with a ghost width equal to the redistribution radius). EBLevelRedist is then used to
increment a solution by the stored redistribution mass. The redistribution radius is a
constant static member of the class. The important functions of EBLevelRedist are as
follows:

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& nvar)

Define the internals of the EBLevelRedist class. Buffers are made at every irregular
cell including ghost buffers at a width of the redistribution radius. Sets values at all
buffers to zero.

– dbl: The layout of the data.

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

15

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void storeMass(const BaseIVFAB<Real>& massDiff,

const DataIndex& datInd,

const Interval& variables);

Store the input mass difference in the internal buffers of the class by incrementing
the buffer with the mass difference.

– massDiff: Conserved values to store in registers.

– datInd: The index of the Box in the input DisjointBoxLayout to which
massDiff corresponds].

– variables: The variables to store. These must fit within zero and the number
of variables input to the define function.

• void setToZero();

Set the internal buffer to zero.

• void redistribute(LevelData<EBCellFAB>& solution,

const Interval& variables);

Redistribute the data contained in the internal buffers Uv′ += wv,v′δMv.

– solution: Solution to increment.

– variables: The variables to increment.

8.6 Class EBFluxRegister

The EBFluxRegister class performs refluxing in an embedded boundary context. The
algorithm for this is described in section 6. The important functions of EBFluxRegister
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the EBFluxRegister class. Buffers are made at every
irregular cell including ghost buffers at a width of the redistribution radius. Sets
values at all buffers to zero.

16

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void setToZero();

Set the registers to zero.

• void incrementCoarseRegular(

const EBFaceFAB& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

void incrementCoarseIrregular(

const BaseIFFAB<Real>& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

Increments the register with data from coarseFlux, multiplied by scale (α):
δF

f
d +=αF

c
d , for all of the d-faces where the input flux (defined on a single rectangle)

coincide with the d-faces on which the flux register is defined. coarseFlux con-
tains fluxes in the dir direction for the grid dblCoar[coarsePatchIndex]. Only
the registers corresponding to the low faces of dblCoarse[coarsePatchIndex]
in the dir direction are incremented (this avoids double-counting at coarse-coarse
interfaces. of the flux register.

– coarseFlux : Flux to put into the flux register. This is not const because
its box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply coarseFlux in flux register.

– coarsePatchIndex : Index which corresponds to the box in the coarse solu-
tion from which coarseFlux was calculated.

– variables : The components to put into the flux register.

– dir : Direction of the faces upon which the fluxes live.

• void incrementFineRegular(

const EBFaceFAB& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,

17

const int& dir,

const Side::LoHiSide& sd);

void incrementFineIrregular(

const BaseIFFAB<Real>& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,

const int& dir,

const Side::LoHiSide& sd);

Increments the register with the average over each face of data from fineFlux,
scaled by scale (α): δF f

d +=α < F
f
d >, for all of the d-faces where the input flux

(defined on a single rectangle) cover the d-faces on which the flux register is defined.
fineFlux contains fluxes in the dir direction for the grid dbl[finePatchIndex].
Only the register corresponding to the direction dir and the side sd is initialized.
srcInterval and dstInterval are as above.

– fineFlux : Flux to put into the flux register. This is not const because its
box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply fineFlux in flux register.

– finePatchIndex : Index which corresponds to which box in the LevelData<FArrayBox>
solution from which fineFlux was calculated.

– variables : The Interval of components of the flux register into which the
flux data is put.

– dir : Direction of faces upon which fluxes live.

– sd : Side of the fine face where coarse-fine interface lies.

• void reflux(LevelData<EBCellFAB>& uCoarse,

const Interval& variables,

const Real& scale);

Increments uCoarse with the reflux divergence of the contents of the flux register,
scaled by scale (α): U c += αDR(δ ~F).

– uCoarse : The solution that gets modified by refluxing.

– variables: gives the Interval of components of the flux register that cor-
respond to the components of uCoarse.

– scale : Factor by which to scale the flux register.

• void incrementRedistRegister(EBCoarToFineRedist& register,

const Interval& variables);

Increments redistribution register with left-over mass from reflux divergence as in
equation 49: δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v.

18

– register: Coarse to fine register that must be incremented (δ2M l,l+1).

– variables: Array indicies to be incremented.

8.7 Class EBCoarToFineRedist

The EBCoarToFineRedist class stores and redistributes mass that must move from the
coarse solution to the fine solution The important functions of EBCoarToFineRedist are
as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& coarPatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in the second
part equation 49.

19

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the coarse grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& fineSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l+1
vf +=wv,v′δ

2M l,l+1
v , vf ∈

C−1
nref (v)

– fineSolution: Solution to increment.

– variables: The variables to increment.

8.8 Class EBFineToCoarRedist

The EBFineToCoarToRedist class stores and redistributes mass that must go from the
fine to the coarse grid. The important functions of EBFineToCoarRedist are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

20

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& fineMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in fineMass as shown in equation 49.

– fineMass: The mass difference to add to the register.

– finePatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += w

fc
v,v′δ

2M l+1,l
v

– fineSolution: Solution to increment.

– variables: The variables to increment.

8.9 Class EBCoarToCoarRedist

The EBCoarToCoarToRedist class stores and redistributes mass that was redistributed
to the coarse grid that is covered by the fine grid and now must be corrected. This is the
notorious “re-redistribution” process. The important functions of EBCoarToCoarRedist
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

21

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in equation 49.

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += wv,v′δ

2M l,l
v

– coarSolution: Solution to increment.

– variables: The variables to increment.

References

[BO84] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comput. Phys., 53:484–512, March 1984.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[JC98] Hans Johansen and Phillip Colella. A cartesian grid embedded boundary
method for Poisson’s eqaution on irregular domains. J. Comput. Phys., 1998.

22

